Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(12): 1958-1969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049566

RESUMO

Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/química , Androgênios/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Domínios Proteicos , Fatores de Transcrição , Linhagem Celular Tumoral
2.
Ann Clin Transl Neurol ; 10(3): 408-425, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651622

RESUMO

OBJECTIVE: Mutations in ANXA11 cause amyotrophic lateral sclerosis (ALS) and have recently been identified as a cause of multisystem proteinopathy and adult-onset muscular dystrophy. These conditions are adult-onset diseases and result from the substitution of Aspartate 40 (Asp40) for an apolar residue in the intrinsically disordered domain (IDD) of ANXA11. Some ALS-related variants are known to affect ANXA11 IDD; however, the mechanism by which the myopathy occurs is unknown. METHODS: Genetic analysis was performed using WES-trio. For the study of variant pathogenicity, we used recombinant proteins, muscle biopsy, and fibroblasts. RESULTS: Here we describe an individual with severe and rapidly progressive childhood-onset oculopharyngeal muscular dystrophy who carries a new ANXA11 variant at position Asp40 (p.Asp40Ile; c.118_119delGAinsAT). p.Asp40Ile is predicted to enhance the aggregation propensity of ANXA11 to a greater extent than other changes affecting this residue. In vitro studies using recombinant ANXA11p.Asp40Ile showed abnormal phase separation and confirmed this variant is more aggregation-prone than the ALS-associated variant ANXA11p.Asp40Gly . The study of the patient's fibroblasts revealed defects in stress granules dynamics and clearance, and muscle histopathology showed a myopathic pattern with ANXA11 protein aggregates. Super-resolution imaging showed aggregates expressed as pearl strips or large complex structures in the sarcoplasm, and as layered subsarcolemmal chains probably reflecting ANXA11 multifunctionality. INTERPRETATION: We demonstrate common pathophysiology for disorders associated with ANXA11 Asp40 allelic variants. Clinical phenotypes may result from different deleterious impacts of variants upon ANXA11 stability against aggregation, and differential muscle or motor neuron dysfunction expressed as a temporal and tissue-specific continuum.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Musculares , Humanos , Esclerose Amiotrófica Lateral/genética , Ácido Aspártico/genética , Neurônios Motores/metabolismo , Doenças Musculares/patologia , Mutação
3.
Commun Biol ; 4(1): 414, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772081

RESUMO

A disordered to ß-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a ß-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.


Assuntos
Amiloide/metabolismo , Complexo Mediador/metabolismo , Príons/metabolismo , Células HeLa , Humanos , Cinética , Complexo Mediador/genética , Agregados Proteicos , Agregação Patológica de Proteínas , Conformação Proteica em Folha beta , Domínios Proteicos , Multimerização Proteica
5.
Cell Rep ; 30(4): 1117-1128.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995753

RESUMO

Prion-like proteins form multivalent assemblies and phase separate into membraneless organelles. Heterogeneous ribonucleoprotein D-like (hnRNPDL) is a RNA-processing prion-like protein with three alternative splicing (AS) isoforms, which lack none, one, or both of its two disordered domains. It has been suggested that AS might regulate the assembly properties of RNA-processing proteins by controlling the incorporation of multivalent disordered regions in the isoforms. This, in turn, would modulate their activity in the downstream splicing program. Here, we demonstrate that AS controls the phase separation of hnRNPDL, as well as the size and dynamics of its nuclear complexes, its nucleus-cytoplasm shuttling, and amyloidogenicity. Mutation of the highly conserved D378 in the disordered C-terminal prion-like domain of hnRNPDL causes limb-girdle muscular dystrophy 1G. We show that D378H/N disease mutations impact hnRNPDL assembly properties, accelerating aggregation and dramatically reducing the protein solubility in the muscle of Drosophila, suggesting a genetic loss-of-function mechanism for this muscular disorder.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Núcleo Celular/metabolismo , Drosophila/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Agregação Patológica de Proteínas/metabolismo , Processamento Alternativo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/ultraestrutura , Animais , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dactinomicina/farmacologia , Drosophila/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/ultraestrutura , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Células Musculares/metabolismo , Células Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Agregação Patológica de Proteínas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura
6.
BMC Bioinformatics ; 20(1): 24, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642249

RESUMO

BACKGROUND: Around 1% of human proteins are predicted to contain a disordered and low complexity prion-like domain (PrLD). Mutations in PrLDs have been shown promote a transition towards an aggregation-prone state in several diseases. RESULTS: Recently, we have shown that an algorithm that considers the effects of mutations on PrLDs composition, as well as on localized amyloid propensity can predict the impact of these amino acid changes on protein intracellular aggregation. In this application note, we implement this concept into the AMYCO web server, a refined algorithm that forecasts the influence of amino acid changes in prion-like proteins aggregation propensity better than state-of-the-art predictors. CONCLUSIONS: The AMYCO web server allows for a fast and automated evaluation of the effect of mutations on the aggregation properties of prion-like proteins. This might uncover novel disease-linked amino acid changes in the sequences of human prion-like proteins. Additionally, it can find application in the in silico design of synthetic prion-like proteins with tuned aggregation propensities for different purposes. AMYCO does not require previous registration and is freely available to all users at: http://bioinf.uab.cat/amyco/ .


Assuntos
Algoritmos , Biologia Computacional/métodos , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Agregados Proteicos , Humanos , Proteínas Priônicas/genética , Domínios Proteicos
7.
Hum Mol Genet ; 28(1): 1-15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215702

RESUMO

Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype-phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.


Assuntos
Mutação de Sentido Incorreto/fisiologia , Proteínas/genética , Relação Estrutura-Atividade , Animais , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Doença , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Patologia , Fenótipo , Conformação Proteica , Proteínas/fisiologia
8.
Sci Rep ; 7(1): 12134, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935930

RESUMO

Prion-like behaviour is attracting much attention due to the growing evidences that amyloid-like self-assembly may reach beyond neurodegeneration and be a conserved functional mechanism. The best characterized functional prions correspond to a subset of yeast proteins involved in translation or transcription. Their conformational promiscuity is encoded in Prion Forming Domains (PFDs), usually long and intrinsically disordered protein segments of low complexity. The compositional bias of these regions seems to be important for the transition between soluble and amyloid-like states. We have proposed that the presence of cryptic soft amyloid cores embedded in yeast PFDs can also be important for their assembly and demonstrated their existence and self-propagating abilities. Here, we used an orthogonal approach in the search of human domains that share yeast PFDs compositional bias and exhibit a predicted nucleating core, identifying 535 prion-like candidates. We selected seven proteins involved in transcriptional or translational regulation and associated to disease to characterize the properties of their amyloid cores. All of them self-assemble spontaneously into amyloid-like structures able to propagate their polymeric state. This provides support for the presence of short sequences able to trigger conformational conversion in prion-like human proteins, potentially regulating their functionality.


Assuntos
Amiloide/química , Proteínas Priônicas/química , Sequência de Aminoácidos , RNA Helicases DEAD-box/química , Bases de Dados de Proteínas , Proteínas Fúngicas/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Intrinsicamente Desordenadas/química , Complexo Mediador/química , Proteínas do Fator Nuclear 90/química , Proteínas Nucleares/química , Coativador 2 de Receptor Nuclear/química , Complexo Repressor Polycomb 1/química , Agregados Proteicos , Domínios Proteicos , Proteínas Tirosina Fosfatases/química , Solubilidade , Antígeno-1 Intracelular de Células T/química , Leveduras/química
9.
FEBS Lett ; 591(13): 1966-1971, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28542905

RESUMO

An increasing number of human proteins are being found to bear a prion-like domain (PrLD) driving the formation of membraneless compartments through liquid-liquid phase separation. Point mutations in these PrLDs promote the transition to an amyloid-like state. There has been much debate on whether this aberrant aggregation is caused by compositional or sequential changes. A recent extensive mutational study of the ALS-associated prion-like hnRNPA2 protein provides a framework to discriminate the molecular determinants behind pathogenic PrLDs aggregation. The effect of mutations on the aggregation propensity of hnRNPA2 is best predicted by combining their impact on PrLD amino acid composition and sequence-based amyloid propensity. This opens an avenue for the prediction of disease causing mutations in other human prion-like proteins.


Assuntos
Esclerose Amiotrófica Lateral/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Mutação , Proteínas Priônicas/química , Agregados Proteicos , Sequência de Aminoácidos , Humanos , Domínios Proteicos
10.
Expert Rev Proteomics ; 14(4): 335-350, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28271922

RESUMO

INTRODUCTION: The aberrant or misfolded forms of the prion protein have been described as the causative agents of rare transmissible spongiform encephalopathies. In addition, proteins associated with frequently occurring neurodegenerative disorders, such as Alzheimer's and Parkinson's, are shown to share prion-like properties and to spread the disease in the brain. Areas covered: Interest in the prion phenomenon has crystallized in a series of computational methods aimed at uncovering prion-like proteins at the proteome level. These programs rely on the identification of sequence signatures similar to those of yeast prions, whose structural conversion is driven by specific domains enriched in glutamine/asparagine residues. A myriad of prion-like candidates, similar to those in yeast, are predicted to exist in organisms across all kingdoms of life. We review here the role of prions, prionoids and prion-like proteins in health and disease, with a special focus on the algorithms and databases developed for their prediction and classification. Expert commentary: Computational approaches provide novel insights into prion-like protein functions, their regulation and their role in disease.


Assuntos
Doenças Neurodegenerativas/genética , Doenças Priônicas/genética , Proteínas Priônicas/química , Proteoma/genética , Algoritmos , Biologia Computacional , Humanos , Doenças Neurodegenerativas/patologia , Doenças Priônicas/patologia , Proteínas Priônicas/genética , Conformação Proteica
11.
Prion ; 11(1): 31-39, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28281928

RESUMO

Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.


Assuntos
Amiloide/química , Príons/química , Ligação de Hidrogênio , Conformação Proteica
12.
Sci Rep ; 6: 34274, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27686217

RESUMO

Amyloids consist of repetitions of a specific polypeptide chain in a regular cross-ß-sheet conformation. Amyloid propensity is largely determined by the protein sequence, the aggregation process being nucleated by specific and short segments. Prions are special amyloids that become self-perpetuating after aggregation. Prions are responsible for neuropathology in mammals, but they can also be functional, as in yeast prions. The conversion of these last proteins to the prion state is driven by prion forming domains (PFDs), which are generally large, intrinsically disordered, enriched in glutamines/asparagines and depleted in hydrophobic residues. The self-assembly of PFDs has been thought to rely mostly on their particular amino acid composition, rather than on their sequence. Instead, we have recently proposed that specific amyloid-prone sequences within PFDs might be key to their prion behaviour. Here, we demonstrate experimentally the existence of these amyloid stretches inside the PFDs of the canonical Sup35, Swi1, Mot3 and Ure2 prions. These sequences self-assemble efficiently into highly ordered amyloid fibrils, that are functionally competent, being able to promote the PFD amyloid conversion in vitro and in vivo. Computational analyses indicate that these kind of amyloid stretches may act as typical nucleating signals in a number of different prion domains.

13.
Prion ; 9(3): 200-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039159

RESUMO

Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.


Assuntos
Amiloide/metabolismo , Príons/metabolismo , Aminoácidos/química , Amiloide/química , Modelos Moleculares , Príons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...